Angle or Globe Pattern

Cup Disc Type
Steam, Air, Water, Oil Service

TYPE 135 ANGLE

TYPE 145

CUP DISC, SEAT-BUSHING
faces upstream, the velocity head of the entering fluid is changed into additional pressure to lift the cup. The tube may extend outside the valve to transmit pressure from a remote point.
A close fitting sleeve surrounds the cup to prevent pressure in the outlet chamber from acting downward on the cup and raising the inlet pressure.

A vent in the spring housing prevents an accumulation of pressure above the disc.
Since there is always some fluid leakage between the sleeve and the cup, this vent connection should be piped back to the reservoir when liquids are used. The piping should be kept as short as possible to avoid pressure buildup above the cup.

When used as a relief valve without the sleeve and vent, the capacities are reduced
as indicated in the table. The smoother and more chatter free characteristics of the cup construction are retained.
Although the spring can be designed for a wide range of adjustment, much better regulation results if the spring is specified and designed for a definite pressure with a moderate adjustment range. The cap locks the adjusting screw and prevents leakage.

Capacity: The outstanding advantage of this valve is its very large capacity with excellent regulation at all rates of flow. The size ordinarily is half the size required with other types.

Materials: Sizes $11 / 2$ inch and smaller have bronze body and trim. Larger sizes have cast iron body and bronze trim. Prices for valves made of other materials will be supplied on request.

TYPES 135 AND 145-DIMENSIONS—WEIGHTS (approximate)

	Globe -F to F-Inches			Angle-Cen. to F-Inches			Maximum Inlet Pressure lbs./sq. in.	Shipping Weight			Cap. Factor	
Size Inches	Screwed	$\begin{gathered} \mathrm{Fl} \\ 125 \# \end{gathered}$	250\#	Screwed	$\begin{array}{r} \text { F } \\ 125 \# \end{array}$	250\#		Screwed	125\#	$\begin{aligned} & \text { ed } \\ & 250 \# \end{aligned}$	with sleeve 5% rise	without sleeve 10% rise
$3 / 4$	41/4	-	-	15/16	-	-	300	12	-	-	. 16	. 11
1	5	-	-	21/16	-	-	300	15	-	-	. 27	. 19
$11 / 4$	51/8	-	-	21/8	-	-	250	16	-	-	. 48	. 33
11/2	51/4	-	-	21/2	-	-	200	17	-	-	. 64	. 45
2	7\%6	81/4	83/4	37/16	41/8	43/8	180	43	52	60	1.1	. 77
21/2	83/4	91/2	101/8	315/16	43/4	51/16	150	53	65	72	1.5	1.1
3	93/4	101/2	111/4	$41 / 2$	$51 / 4$	5\%	140	73	85	100	2.4	1.7
4	-	121/4	127/8	-	61/8	67/16	125	-	120	140	4.4	3.1
5	-	141/2	153/8	-	71/4	711/16	100	-	170	195	6.4	4.5
6	-	$161 / 4$	171/8	-	81/8	8\%	90	-	200	235	8.8	6.1
8	-	191/8	201/8	-	91/8	9\%\%	80	-	350	380	16.0	11.0

TYPES 135, 145 BACK PRESSURE VALVES

Capacity Table

The maximum capacity of any back pressure valve depends on its size and on the inlet and outlet pressures at the maximum rate of flow. The capacity depends also on the type and design of control mechanism. It is necessary to have all this information to figure the capacity accurately.
Although a very large capacity can be obtained from any back pressure or relief valve if the inlet pressure rises enough, only the capacity obtainable with a moderate and safe pressure rise is important.

The capacities of valves in this bulletin are based on 10% rise or accumulation in inlet pressure above the set opening pressure, except Type 135 based on 5% rise.

Don't base your selection of valve size merely on size of pipe.

1. To find Valve Capacity - Multiply Capacity Factor by Orifice Capacity.

2. To find Valve Size needed - Divide Required Capacity by Orifice Capacity to obtain Capacity Factor. Then use Table No. 1.

Capacity Factors in Table No. 1

 represent the capacity of each valve, with good regulation, as compared to the capacity of a standard orifice under the same conditions.
Orifice Capacities in Tables Nos.

2, 3, 4 and 5 are the rates of flow through a perfect (100% coefficient) orifice or nozzle of 1 sq . in. area for various combinations of inlet and outlet pressures.
Corrections for superheat and for fluids of different specific gravities are shown.
Maximum inlet temperature $450^{\circ} \mathrm{F}$.
Example: Find steam capacity of 3" Type 135 Inlet pressure 20 lbs. -Outlet 8 lbs. or lower. Capacity Factor = 2.4 (See Table No. 1). Orifice Capacity $=1,900 \mathrm{lbs}$. per hr. (Table No. 3). Valve Capacity = $2.4 \times 1,900=4,560 \mathrm{lbs}$. per hr. steam.

	$3 / 8$	$1 / 21$	3/4"	1"	$11 / 4 "$	11/2"	2 "	21/2"	3"	4"	5"	$6 "$	8"	10"	12"	14"
No. 135			. 16	. 27	. 48	. 64	1.1	1.5	2.4	4.4	6.4	8.8	16			

table no. 2-orifice capacities-high pressure steam

| Outlet Pressure
 Lbs. per Square
 Inch Gage | Initial Gage Pressure-Lbs. per Square Inch | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 200 | 175 | 150 | 125 | 100 | 80 | 60 | 50 |
| 125 | 10570 | 8820 | 6270 | | | | | |
| 100 | 10900 | 9580 | 7960 | 5640 | | | | |
| 80 | 10900 | 9650 | 8400 | 6840 | 4620 | | | |
| 60 | 10900 | 9650 | 8400 | 7150 | 5720 | 4100 | | |
| 50 | 10900 | 9650 | 8400 | 7150 | 5900 | 4670 | 2760 | |
| 40 | 10900 | 9650 | 8400 | 7150 | 5900 | 4900 | 3580 | 2550 |
| 30 | 10900 | 9650 | 8400 | 7150 | 5900 | 4900 | 3885 | 3225 |
| 25 | 10900 | 9650 | 8400 | 7150 | 5900 | 4900 | 3900 | 3360 |
| $20-0$ | 10900 | 9650 | 8400 | 7150 | 5900 | 4900 | 3900 | 3400 |

If the steam is initially superheated multiply the above weights by $1-(0.00065 \mathrm{x}$ degrees Fahr. superheat)
table no. 3-orifice capacities-low pressure steam

Outlet Pressure Lbs. per Square Inch Gage	Initial Gage Pressure-Lbs. per Square Inch								
	40	30		25	20	15	10	8	5
30	2310								
25	2710	1575							
20	2840	2050	1480						
15	2900	2370	1930	1385					
10	2900	2400	2115	1780	1235				
8	2900	2400	2150	1900	1540	760			
5	2900	2400	2150	1900	1600	1110	860		
1	2900	2400	2150	1900	1600	1310	1075	915	
O-Vac.	2900	2400	2150	1900	1600	1330	1210	985	

If the steam is initially superheated multiply the above weights by 1 -(0.00065 x degrees Fahr. superheat)
table no. 4-orifice capacities for air

Outlet Pressure Lbs. per Square Inch Gage	Initial Gage Pressure-Lbs. per Square Inch									
	100	90	80	70	60	50	40	30	20	10
	Cu. Ft. per Min. of Free Air (60 ${ }^{\circ} \mathrm{F}$.-14.7\#/sq. in.) per Sq. In.									
70	1886	1535	1100							
60	2035	1770	1453	1023						
50	2090	1880	1643	1355	958					
40	2100	1913	1725	1505	1235	881				
35	2100	1913	1735	1530	1317	1025	590			
30	2100	1913	1735	1550	1350	1120	802			
25	2100	1913	1735	1550	1370	1165	910	533		
20	2100	1913	1735	1550	1370	1185	978	696		
15	2100	1913	1735	1550	1370	1185	1002	812	460	
10	2100	1913	1735	1550	1370	1185	1002	815	580	
5	2100	1913	1735	1550	1370	1185	1002	818	635	375
0	2100	1913	1735	1550	1370	1185	1002	818	635	446

For other gases, divide above CFM by $\sqrt{\text { specific gravity of the gas. }}$
table no. 5-orifice capacities for water

Pressure Drop through Orifice-Lbs. per Square Inch													
Pressure Drop	100	85	70	60	50	40	30	25	20	15	10	5	
GPM per Square Inch	380	350	318	294	269	240	208	190	170	147	120	85	

For other liquids, divide above GPM by $\sqrt{\text { specific gravity of the liquid. }}$

